Modes of Tropical Variability under Convective Adjustment and the Madden–Julian Oscillation. Part II: Numerical Results

1994 ◽  
Vol 51 (13) ◽  
pp. 1895-1914 ◽  
Author(s):  
Jia-Yuh Yu ◽  
J. David Neelin
2018 ◽  
Vol 146 (11) ◽  
pp. 3873-3884 ◽  
Author(s):  
Michael K. Tippett

Abstract The Madden–Julian oscillation (MJO) is the leading mode of tropical variability on subseasonal time scales and has predictable impacts in the extratropics. Whether or not the MJO has a discernible influence on U.S. tornado occurrence has important implications for the feasibility of extended-range forecasting of tornado activity. Interpretation and comparison of previous studies is difficult because of differing data periods, methods, and tornado activity metrics. Here, a previously described modulation of the frequency of violent tornado outbreaks (days with six or more tornadoes reported rated EF2 or greater) by the MJO is shown to be fairly robust to the addition or removal of years to the analysis period and to changes in the number of tornadoes used to define outbreak days, but is less robust to the choice of MJO index. Earlier findings of a statistically significant MJO signal in the frequency of days with at least one tornado report are shown to be incorrect. The reduction of the frequency of days with tornadoes rated EF1 and greater when MJO convection is present in the Maritime Continent and western Pacific is statistically significant in April and robust across varying thresholds of reliably reported tornado numbers and MJO indices.


2017 ◽  
Vol 30 (24) ◽  
pp. 10275-10291 ◽  
Author(s):  
Fei Liu ◽  
Bin Wang

This study investigates the moisture and wave feedbacks in the Madden–Julian oscillation (MJO) dynamics by applying the general three-way interaction theoretical model. The three-way interaction model can reproduce observed large-scale characteristics of the MJO in terms of horizontal quadrupole-vortex structure, vertically tilted structure led by planetary boundary layer (PBL) convergence, slow eastward propagation with a period of 30–90 days, and planetary-scale circulation. The moisture feedback effects can be identified in this model by using diagnostic thermodynamic and momentum equations, and the wave feedback effects are investigated by using a diagnostic moisture equation. The moisture feedback is found to be responsible for producing the MJO dispersive modes when the convective adjustment process is slow. The moisture feedback mainly acts to reduce the frequency and growth rate of the short waves, while leaving the planetary waves less affected, so neglecting the moisture feedback is a good approximation for the wavenumber-1 MJO. The wave feedback is shown to slow down the eastward propagation and increase the growth rate of the planetary waves. The wave feedback becomes weak when the convective adjustment time increases, so neglecting the wave feedback is a good approximation for the MJO dynamics during a slow adjustment process. Sensitivities of these two feedbacks to other parameters are also discussed. These theoretical findings suggest that the two feedback processes, and thus the behaviors of the simulated MJO mode, should be sensitive to the parameters used in cumulus parameterizations.


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


1996 ◽  
Vol 18 (4) ◽  
pp. 14-22
Author(s):  
Vu Khac Bay

Investigation of the elastic state of curve beam system had been considered in [3]. In this paper the elastic-plastic state of curve beam system in the form of cylindrical shell is analyzed by the elastic solution method. Numerical results of the problem and conclusion are given.


Sign in / Sign up

Export Citation Format

Share Document